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Abstract. Some properties of the eigensolutions of two commuting non Hermitian operators are brought
to the light and exploited to introduce a novel characterization of a set of non classical states of a single
bosonic mode. In this context, the construction of possible generalizations of the even and odd coherent
states is developed in detail.

PACS. 42.50.-p Quantum optics – 42.50.Dv Nonclassical field states; squeezed, antibunched,
and sub-Poissonian states; operational definitions of the phase of the field; phase measurements

In this paper we present the construction of a class of nor-
malizable non classical states relative to a single bosonic
mode characterized by an energy raising operator a† and
an energy lowering operator a obeying the commutation
relation [a, a†] = 1. The one-dimensional quantum har-
monic oscillator of frequency Ω is described by the Hamil-
tonian

H = Ω

(
a†a+

1

2

)
(1)

and, undoubtedly, represents the simplest and most ex-
tensively studied system whose dynamics may be related
to the time evolution of the non Hermitian dimensionless
bosonic variables a and a†.

Several other systems may indeed be bosonized. This
means that, under appropriate conditions depending on
the physical situation under scrutiny, the physical be-
haviour of these systems may be investigated adopting
the Hamiltonian model (1) together with an effective def-
inition of Ω.

The quantum mechanical motion of the center of mass
of a trapped ion [1,2], the quantized electro magnetic field
of a single-mode cavity [3], the low-temperature quantum
dynamics of a fictitious phase-particle at the bottom of
the Josephson potential [4] and, in general, material sys-
tems making small oscillations about a stable equilibrium
point, provide concrete examples of fruitfully bosonizable
physical systems.

Quite recently the orthonormalized eigenstates of an
arbitrarily prefixed power of the annihilation operator a
have been introduced [5]. Some interesting non classical
properties of these states such as, for instance, anti bunch-
ing and higher order squeezing have been studied [5,6].
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It should be however noted that both these references con-
fine themselves to define these eigenstates of ak (k ≥ 3)
intuitively generalizing the well-known Fock representa-
tion of the even and odd coherent states introduced by
Dodonov et al. [7].

Surprisingly enough, moreover, the authors do no at-
tempt to establish eventual physical links between the
states they present and the even and odd coherent states.
The scope of this paper is twofold. Firstly we wish to pro-
vide a novel constructive way for characterizing this set
of non classical states of a single bosonic mode (hereafter
also referred to as single-mode cavity field). In particu-
lar we deduce their explicit Fock and coherent expansions
defining and solving an appropriate eigenvalue problem.
Secondly, in the context of this approach, we look for and
bring to the light the existence of a physical property
which paves the way for defining and recognizing possi-
ble generalizations of the so-called even and odd coherent
states in the set of the eigenstate of ak whatever k is.

It is well-known that if |α〉 (α ∈ C, |α| 6= 0) is any
coherent state of a quantized single-mode cavity field, the
two orthogonal states

|α; 2, j〉 = N
(2)
α,j(|α〉 + eiπj | − α〉) j = 0, 1 (2)

are normalized eigenstates of a2,

N
(2)
α,j =

1
√

2

[
1 + (−1)je−2|α|2

]−1
2

(3)

being the appropriate normalization constants. The state
|α; 2, 0〉 (|α; 2, 1〉) is called even (odd) coherent state
because 〈2s+ 1|α; 2, 0〉 = 0 (〈2s|α; 2, 1〉 = 0) for any Fock
state |2s+ 1〉 (|2s〉) of the cavity field, described by equa-
tion (1), containing an odd (even) number of excitations.
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The two coherent states |α〉 and |−α〉, with α 6= 0, are
degenerate eigenstates of a2 pertaining to the same eigen-
value α2. Thus, all the linear combination of two 180◦-out
of phase coherent states are eigenstates of a2. In partic-
ular, the well-studied non classical [8,9] symmetric and
antisymmetric superpositions of |α〉 and | −α〉, prototype
of the so-called Schrödinger cat states [10], belong to the
same invariant subspace of a2.

Consider now the non Hermitian operator a2eiπa
†a. It

commutes with a2 and, in the invariant subspace of a2

correspondent to α2 6= 0, its eigenstates are |α; 2, 0〉 and

|α; 2, 1〉 whereas the relative eigenvalues are γ
(2)
0 = α2

and γ
(2)
1 = −α2. Therefore, looking for the eigensolutions

of the non Hermitian operator a2eiπa
†a yields a natural

way of building up linear combinations of coherent states
characterized by the fact that the difference between the
numbers of quanta present in two successive Fock states of
their respective number representations is fixed and equal
to 2. (Sometimes we refer to this difference calling it “dis-
tance”).

The occurrence of such peculiar oscillations may be
interpreted as a quantum interference effect in the phase
space and therefore turns out to be a non classical sig-
nature of these states [11,12]. On the basis of these con-
siderations, it might be of interest to find a general way
for characterizing states of the single-mode quantized cav-
ity field whose Fock representations exhibit a fixed and
equal to n ≥ 2 distance between two successive energy
eigenvectors.

To this end we introduce the non Hermitian operators

Cn = anei
2π
n
a†a, n = 1, 2, . . . (4)

The eigenstates of C1 are the coherent states and the
eigenstates of C2, relative to generic not null eigenvalues,
are the even or the odd coherent states.

The eigenstates of an are all the coherent states |α〉 as
well as the Fock states |1〉, |2〉, . . . , |n− 1〉. Since an|α〉 =
αn|α〉 and an|s〉 = 0 when s = 0, 1, . . . , n−1, each eigen-
value of an is n-fold degenerate. This fact, in analogy with
the properties of the eigensolutions of C2, suggests seeking
orthonormal basis of eigenstates of Cn in each invariant
subspace of an.

If α = 0 the solution of this problem is immediate be-
cause the n Fock states |0〉, |1〉, . . . , |n−1〉 are eigenstates
of an and Cn pertaining to their common eigenvalue 0.

For any fixed α 6= 0 let’s represent symbolically the n
simultaneous eigenstates of an and Cn by |α;n, j〉 where
j = 0, 1, . . . , n − 1 is a label introduced at this stage for
convenience of classification. Thus, by definition, we put:

an|α;n, j〉 = αn|α;n, j〉 (5)

Cn|α;n, j〉 = γ
(n)
j |α;n, j〉 (6)

〈α;n, j|α;n, j′〉 = δjj′ (7)

where γ
(n)
j denotes a complex unknown eigenvalue of Cn.

We underline that the states solutions of this problem
provide particular examples of the multi photon coherent
states defined by Jex and Buzek [13].

Applying the unitary operator ei
2π
n a†a(e−i

2π
n a†a) to

both members of equation (5) (Eq. (6)), we deduce that
the states |α;n, j〉 must also be solutions of the equation

ei
2π
n
a†a|α;n, j〉 =

(
γ

(n)
j

αn

)
|α;n, j〉. (8)

Thus we see that for any fixed α 6= 0, the simultaneous
eigenstates of an and Cn are necessarily eigensolutions

of the unitary operator ei
2π
n a†a. The eigenvalues of this

operator are the nth roots of 1 and may be represented as

ε
(n)
j = exp

(
i 2π
n j
)

where j = 0, 1, . . . , n− 1. Thus we find

that γ
(n)
j and αn are related as follows:

γ
(n)
j = αnei

2π
n
j . (9)

The eigenvectors of ei
2π
n
a†a pertaining to ε

(n)
j are the

infinitely-many Fock states |hn+ j〉 where h = 0, 1, . . . is
an arbitrary natural number. This means that the number
state representation of |α;n, j〉 may be from the beginning
conveniently written as:

|α;n, j〉 = Ñ
(n)
α,j

∞∑
h=0

b
(n)
α,j(h)|hn+ j〉 (10)

where j = 0, 1, . . . , n− 1, and Ñ
(n)
α,j > 0 is an appropriate

normalization constant. In view of the fundamental theo-
rem on the division between integers [14], the diophantine
equation hn+ j = h′n+ j′ in the natural unknowns h and
h′, is impossible under the condition j, j′ = 0, 1, . . . , n−1
and j 6= j′. This amounts to saying that searching for
solutions of equations (5, 6) in the form expressed by
equation (10) satisfies automatically the orthonormality
condition (7).

It is worth remarking here that the Fock state repre-
sentation (10) of |α;n, j〉, consists in an arithmetic infinite
progression having the state |j〉 as initial term and a com-
mon difference, equal to n, between successive terms.

To find the h-dependence of b
(n)
α,j(h), we insert equa-

tion (10) into equation (6) and exploit equation (9) get-
ting the following linear difference equation of order 1 with
variable coefficients:

b
(n)
α,j(h+ 1) = αn

√
(hn+ j)!

((h+ 1)n+ j)!
b
(n)
α,j(h) (11)

which must be associated to an appropriately chosen ini-
tial condition.

In view of equations (7, 11), b
(n)
α,j(0) cannot vanish. On

the other hand, considering that equation (10) contains
an adjustable normalization constant, it is of no relevance
the particular choice of the not null value attributed to
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|α;n, j〉 = Ñ
(n)
α,j

∞∑
h=0

αnh+j√
(hn+ j)!

|hn+ j〉 = Ñ
(n)
α,j

∞∑
s=0

αs
√
s!
δ
[
s−j
n

],
s−j
n

|s〉

=
Ñ

(n)
α,j

n

∞∑
s=0

αs
√
s!

(
n−1∑
r=0

(ε(n)
r )s−j

)
|s〉 =

Ñ
(n)
α,j

n
e
|α|2

2

n−1∑
r=0

(
ε(n)
r

)−j
|αε(n)

r 〉 (18)

b
(n)
α,j(0). Thus we put b

(n)
α,j(0) = αj/

√
j!. It is not difficult

to prove by mathematical induction that then

b
(n)
α,j(h) =

αnh+j√
(hn+ j)!

· (12)

Since the series

∞∑
h=0

|b(n)
α,j(h)|2 =

∞∑
h=0

|α|2(nh+j)

(hn+ j)!
(13)

is convergent whatever α ∈ C and j = 0, 1, . . . , n− 1 are,
then the n states

|α;n, j〉 = Ñ
(n)
α,j

∞∑
h=0

αnh+j√
(hn+ j)!

|hn+ j〉

j = 0, 1, n− 1 (14)

solve the problem posed by equations (5–7) provided that

Ñ
(n)
α,j =

(
∞∑
h=0

|b(n)
α,j(h)|2

)−1
2

. (15)

Having in mind to bring to the light the eventual link
between the even and odd coherent states of the single
bosonic mode system and the states |α;n, j〉, we look for
the coherent state expansion of these vectors in the invari-
ant subspace of an relative to its eigenvalue αn.

To this end, consider the n normalized eigenstates

of an
{
|αε(n)

j 〉, a
n|αε(n)

j 〉 = αn|αε(n)
j 〉, j = 0, 1, . . . , n− 1

}
and the Fock expansion of the coherent state |αε(n)

j 〉

|αε(n)
j 〉 = e−

|α|2

2

∞∑
s=0

(αε
(n)
j )s
√
s!
|s〉 · (16)

With the help of the well-known identity, ([x]=integer part
of x),

n−1∑
r=0

(ε(n)
r )p = nδ[ p

n

]
,
p
n

p = 0,±1,±2, . . . (17)

we succeed in transforming the expression (14) for |α;n, j〉
(α 6= 0) as follows:

see equation (18) above

where equation (16) has been used. Apart from its inher-
ent theoretical interest on which we shall comment later
on, this result proves itself to be useful from a mathemati-
cal point of view too. We note, in fact, that equation (18),
expressing the normalized state |α;n, j〉 as linear combi-
nation of n coherent states only, provides a successfully
starting point for attaining an exact explicit expression

of Ñ
(n)
α,j . From equations (7, 18) and with the help of the

formula

〈αε(n)
r′ |αε

(n)
r 〉 = e−2|α|2sin2(πn (r−r′))

× e
i|α|2sin

(
2π
n

(r−r′)
)

(19)

we obtain

Ñ
(n)
α,j = ne−

1
2 |α|

2
∣∣∣ n−1∑
r,r′=0

e−i
2π
n

(r−r′)j

× e−2|α|2sin2(πn (r,r′))e
i|α|2sin

(
2π
n

(r,r′)
)∣∣∣−1

2
. (20)

To take advantage from the fact that the argument in the
finite double sum appearing in equation (20) is a function
of (r − r′) only, we have built up the following reduction
formula of general validity:

n−1∑
r,r′=0

f(r, r′) =
n−1∑

r−=−(n−1)

2(n−1)−|r−|∑
r+=|r−|

F (r−, r+)

×

(
1 + (−1)r++|r−|

)
2

=
n−1∑

r−=−(n−1)

(n−1)−|r−|∑
r̃+=0

G(r−, r̃+) (21)

where


r− = r − r′

r+ = r + r′ = 2r̃+ + |r−|

f(r, r′) = f
(
r++r−

2 ,
r+−r−

2

)
≡ F (r−, r+)

= F (r−, 2r̃+ + |r−|) ≡ G(r−, r̃+)

. (22)
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|α;n, j〉 =
√
ne−|α|

2/2

[
1 + (−1)je−2|α|2δ

2[n2 ],n

+ δ̃ñ,0

n̄∑
ν=1

e−2|α|2 sin2 π
n
ν cos

[
|α|2 sin

2π

n
ν −

2π

n
jν
]]− 1

2
∞∑
h=0

αnh+j√
(nh+ j)!

|nh+ j〉 (25)

Exploiting this mathematical tool yields the following ex-

pression for Ñ
(n)
α,j :

Ñ
(n)
α,j =

√
ne−|α|

2/2
[
1 + (−1)je−2|α|2δ2[n2 ],n

+ δ̃n̄,0

n̄∑
ν=1

e−2|α|2 sin2 π
nν

× cos

[
|α|2 sin

2π

n
ν −

2π

n
jν

]]−1
2

(23)

where 2n̄ = n− 1− δ2[n2 ],n and δ̃n̄,0 = 2(1− δn̄,0).

For the sake of comparison, it is useful to write down

the relation between Ñ
(n)
α,j and the normalization constant

N
(n)
α,j relative to the equal-weighted coherent state super-

position appearing in the last member of equation (18):

N
(n)
α,j =

e
1
2 |α|

2

n
Ñ

(n)
α,j . (24)

We note that for n = 2, we recover from equations (23, 24)
the correct normalization constants, given by equation (3),
relative to the even (j = 0) and odd (j = 1) coherent
states.

Inserting equation (23) into equation (14), completes
the construction of the simultaneous eigenstates of the non
Hermitian operators an and Cn yielding

see equation (25) above.

Equation (25) shows that each state |α;n, j〉 may be for-
mally obtained by extracting an arithmetic progression of
terms from the Fock expansion of the coherent state |α〉.
At the same time equation (18) says that such non classi-
cal “extracted states” may be expressed as linear combi-
nations of n equal-weighted coherent states positioned at
equal distance on a circle of radius |α| in the phase space.
For these reasons we propose to call the states defined by
equation (25) subcoherent states of order n.

It is worth noting that when the coherent state super-
positions defined by equation (18), are taken on circles
with an high enough n-dependent radius, then these sub-
coherent states |α;n, j〉 describe generalized Schrödinger
cat states in the sense that they may be regarded as linear
combinations of n macroscopically distinguishable states.

A characteristic feature of all the states |α;n, j〉, once
more easily deducible from equation (18), is that the

phase difference δ
(n)
j between two successive amplitudes

(ε
(n)
r )−j and (ε

(n)
r+1)−j is constant and equal to (2π/n)j.

This circumstance gives us the opportunity of classify-
ing the n different simultaneous eigenstates of an and

Cn in terms of the n different values of δ
(n)
j , namely 0,

(2π/n), . . . , (2π/n)(n− 1).

In particular, for any n, δ
(n)
0 = 0 so that the state

|α;n, 0〉 =
e

1√
2
|α|2

n
Ñ

(n)
α,0

n−1∑
r=0

|αε(n)
r 〉

= Ñ
(n)
α,0

∞∑
h=0

αnh√
(hn)!

|hn〉 (26)

with Ñ
(n)
α,0 given by equation (23), generalizes the even

coherent state |α; 2, 0〉. Our suggestion is to call it even
coherent state of order n.

In view of equation (2), possible generalized odd coher-
ent states might be defined on the basis of the condition

δ
(n)
j = π. It is immediate to realize that such a condition

may be satisfied for any even n choosing j = n/2, whereas
it cannot be verified for any odd n. This means that, in
accordance with our definition, the state |α;n, n/2〉, mean-
ingful under the prescription n even, provides a reasonable
generalization of the odd coherent state |α; 2, 1〉 and may
be called odd coherent state of order n.

It should be noted that, if n is divisible by 4,
〈2s + 1|α;n, n/2〉=0 for any s and that, if n is odd,∑∞
s=0 |〈2s|α;n, 0〉|2 < 1. These properties clearly evidence

that, differently from the case n = 2, the parity of the
number states appearing in the Fock expansion of |α;n, 0〉
or |α;n, n/2〉 does not play any characterizing role when
n > 2.

Indeed our way of introducing the even or odd co-
herent states of order n relies on the existence of two
n-independent possible values of δ

(n)
j , namely 0 and π (n

even).
In other words the sets {|α;n, 0〉} and {|α;n/2, n〉},

are identified by peculiar n-independent prescriptions on
the way of superposing the coherent states of the class

{|αε(n)
r 〉}.

Concerning the case n odd, we propose to classify as
generalized odd coherent states of order n those states for

which δ
(n)
j is near π as much as possible, that is the states

|α;n, j〉 correspondent to j = (n± 1)/2. We note that, in
this case too, the Fock expansion of these states generally
contains contributions with both even and odd number of
quanta.

In order to consolidate the physical link between
|α; 2, 0〉 and |α;n, 0〉 on the one hand, and between |α; 2, 1〉
and the states |α;n, n/2〉 (n even) or |α;n, (n ± 1)/2〉 (n
odd) on the other hand, it is of relevance to bring to the
light, for each kind of generalized states, even or odd, the
existence of qualitatively n-independent physical effects
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whose origin may be traced back to the quantum interfer-
ence in the phase space.

To this end we have evaluated the influence of the in-
terference process on the mean population of the quan-
tized single-mode cavity field, getting

〈α;n, j|a†a|α;n, j〉 = |α|2
(Ñ

(n)
α,j )2

(Ñ
(n)
α,j−1)2

≡ P (n)
α (δ

(n)
j ) (27)

where Ñ
(n)
α,j−1 is given by equation (23) even for j = 0.

Writing P
(n)
α (δ

(n)
j ) instead of P

(n)
α (j), we wish to empha-

size the fact that the expectation value of a†a on the state

|α;n, j〉 depends of j only through (2π/n)j ≡ δ(n)
j . A care-

ful examination of the behaviour of P
(n)
α (δ

(n)
j ) based on

equations (23, 27), reveals that it exhibits a n- and |α|2-
sensitive oscillatory dependence on the phase-difference

parameter, reaching its absolute minimum for δ
(n)
j = 0

and its absolute maximum for δ
(n)
j = π (or near π as

much as possible) whatever n and α are.
In this paper we have presented a detailed new char-

acterization of all the sub coherent states of order n rela-
tive to a single bosonic mode. We have carefully discussed
some properties of these states showing the possibility of
singling out in this class two particular sets of states which
represent a convincing generalization of the traditional
even and odd coherent states.

It is well-known that the even and odd coherent states
have been realized in laboratory [15]. We wish moreover
to remark that a proposal for the experimental production
of the class of states introduced in this paper has been
proposed quite recently in the literature [16]. We believe
that the states |α;n, j〉 constructed in this paper might
also be generated in laboratory using some appropriate
nonlinear matter-radiation coupling [9,12,17].

We wish to conclude emphasizing that, in our opinion,
the novel point of view adopted in this paper to build up
the states |α;n, j〉, might be of some help to find and study
other examples of non classical superpositions of a finite
number of coherent states.
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